Input TRS: 1: f(act(),y) -> f(el(nact()),y) 2: f(x,nact()) -> f(x,act()) 3: act() -> el(nact()) 4: l(el(x)) -> el(l(x)) 5: el(r(x)) -> r(el(x)) e1: nact() ->= l(nact()) [relative] e2: nact() ->= r(nact()) [relative] Number of Rules: 5 Direct POLO(Sum) ...Direct Mat2b ... removes: 1 I(nact) = [1;0] I(r) = [1,0;0,0] * x1 I(l) = [1,0;0,0] * x1 I(f) = [2,1;1,0] * x1 + [2,0;1,0] * x2 I(el) = [1,0;0,0] * x1 I(act) = [1;1] Number of Rules: 4 Direct POLO(Sum) ...Direct Mat2b ... removes: 3 I(nact) = [1;2] I(r) = [1,0;0,0] * x1 I(l) = [1,0;0,0] * x1 I(f) = [2,1;1,0] * x1 + [1,1;0,0] * x2 I(el) = [1,0;0,0] * x1 I(act) = [2;1] Number of Rules: 3 Direct POLO(Sum) ... removes: 2 I(nact) = 1 I(r) = x1 I(l) = x1 I(f) = x1 + x2 I(el) = x1 I(act) = 0 Number of Rules: 2 Direct POLO(Sum) ...Direct Mat2b ... removes: 4 I(nact) = [0;0] I(r) = [1,1;0,0] * x1 I(l) = [2,0;0,0] * x1 I(el) = [2,0;0,0] * x1 + [1;0] Number of Rules: 1 Direct POLO(Sum) ...Direct Mat2b ...Direct Mat3b ... failed. Dependency Pairs: #1: # el(r(x)) -> # el(x) Number of SCCs: 1 SCC { #1 } POLO(Sum)... QLPOS... QWPOpS(mSum)... Mat3b... failed.