Input TRS: 1: top(north(old(n),e,s,w)) -> top(east(n,e,s,w)) 2: top(north(new(n),old(e),s,w)) -> top(east(n,old(e),s,w)) 3: top(north(new(n),e,old(s),w)) -> top(east(n,e,old(s),w)) 4: top(north(new(n),e,s,old(w))) -> top(east(n,e,s,old(w))) 5: top(east(n,old(e),s,w)) -> top(south(n,e,s,w)) 6: top(east(old(n),new(e),s,w)) -> top(south(old(n),e,s,w)) 7: top(east(n,new(e),old(s),w)) -> top(south(n,e,old(s),w)) 8: top(east(n,new(e),s,old(w))) -> top(south(n,e,s,old(w))) 9: top(south(n,e,old(s),w)) -> top(west(n,e,s,w)) 10: top(south(old(n),e,new(s),w)) -> top(west(old(n),e,s,w)) 11: top(south(n,old(e),new(s),w)) -> top(west(n,old(e),s,w)) 12: top(south(n,e,new(s),old(w))) -> top(west(n,e,s,old(w))) 13: top(west(n,e,s,old(w))) -> top(north(n,e,s,w)) 14: top(west(old(n),e,s,new(w))) -> top(north(old(n),e,s,w)) 15: top(west(n,old(e),s,new(w))) -> top(north(n,old(e),s,w)) 16: top(west(n,e,old(s),new(w))) -> top(north(n,e,old(s),w)) 17: top(north(bot(),old(e),s,w)) -> top(east(bot(),old(e),s,w)) 18: top(north(bot(),e,old(s),w)) -> top(east(bot(),e,old(s),w)) 19: top(north(bot(),e,s,old(w))) -> top(east(bot(),e,s,old(w))) 20: top(east(old(n),bot(),s,w)) -> top(south(old(n),bot(),s,w)) 21: top(east(n,bot(),old(s),w)) -> top(south(n,bot(),old(s),w)) 22: top(east(n,bot(),s,old(w))) -> top(south(n,bot(),s,old(w))) 23: top(south(old(n),e,bot(),w)) -> top(west(old(n),e,bot(),w)) 24: top(south(n,old(e),bot(),w)) -> top(west(n,old(e),bot(),w)) 25: top(south(n,e,bot(),old(w))) -> top(west(n,e,bot(),old(w))) 26: top(west(old(n),e,s,bot())) -> top(north(old(n),e,s,bot())) 27: top(west(n,old(e),s,bot())) -> top(north(n,old(e),s,bot())) 28: top(west(n,e,old(s),bot())) -> top(north(n,e,old(s),bot())) e1: top(north(old(n),e,s,w)) ->= top(north(n,e,s,w)) [relative] e2: top(north(new(n),e,s,w)) ->= top(north(n,e,s,w)) [relative] e3: top(east(n,old(e),s,w)) ->= top(east(n,e,s,w)) [relative] e4: top(east(n,new(e),s,w)) ->= top(east(n,e,s,w)) [relative] e5: top(south(n,e,old(s),w)) ->= top(south(n,e,s,w)) [relative] e6: top(south(n,e,new(s),w)) ->= top(south(n,e,s,w)) [relative] e7: top(west(n,e,s,old(w))) ->= top(west(n,e,s,w)) [relative] e8: top(west(n,e,s,new(w))) ->= top(west(n,e,s,w)) [relative] e9: bot() ->= new(bot()) [relative] Number of Rules: 28 Direct Mat2b ... removes: 1 5 9 13 e7 e3 e5 e1 I(new) = [1,0;1,0] * x1 + [0;4] I(south) = [2,0;1,0] * x1 + [1,0;1,0] * x2 + [1,0;1,0] * x3 + [1,0;0,0] * x4 + [1;1] I(top) = x1 I(bot) = [2;6] I(west) = [2,0;1,0] * x1 + [1,0;1,0] * x2 + [1,0;1,0] * x3 + [1,0;0,0] * x4 + [1;1] I(north) = [2,0;1,0] * x1 + [1,0;1,0] * x2 + [1,0;1,0] * x3 + [1,0;0,0] * x4 + [1;1] I(east) = [2,0;1,0] * x1 + [1,0;1,0] * x2 + [1,0;1,0] * x3 + [1,0;0,0] * x4 + [1;1] I(old) = [1,1;0,0] * x1 + [1;1] Number of Rules: 24 Direct Mat2b ... removes: 15 27 I(new) = [2,1;0,0] * x1 I(south) = [2,0;0,0] * x1 + [1,1;0,1] * x2 + [1,0;1,0] * x3 + [1,0;0,0] * x4 I(top) = [1,0;0,0] * x1 I(bot) = [0;0] I(west) = [1,0;0,0] * x1 + [1,1;1,0] * x2 + [1,0;0,0] * x3 + [1,0;0,0] * x4 I(north) = [1,0;0,0] * x1 + [1,0;1,0] * x2 + [1,0;0,0] * x3 + [1,0;1,0] * x4 I(east) = [2,0;0,0] * x1 + [1,0;0,0] * x2 + [1,0;0,0] * x3 + [1,0;0,0] * x4 I(old) = [2,1;0,1] * x1 + [0;1] Number of Rules: 22 Direct Mat2b ... removes: 18 3 25 12 I(new) = [1,1;0,0] * x1 I(south) = [1,0;0,0] * x1 + x2 + [1,0;0,0] * x3 + [1,1;1,0] * x4 + [1;0] I(top) = [2,0;1,0] * x1 I(bot) = [1;0] I(west) = [1,0;0,0] * x1 + [1,0;1,0] * x2 + [1,1;0,0] * x3 + [1,0;0,0] * x4 + [1;1] I(north) = [1,0;1,0] * x1 + x2 + [1,1;0,0] * x3 + [1,1;1,0] * x4 + [1;1] I(east) = [1,0;0,0] * x1 + [1,0;0,0] * x2 + [1,0;1,1] * x3 + [1,1;0,0] * x4 + [1;0] I(old) = [2,1;0,1] * x1 + [1;1] Number of Rules: 18 Direct Mat2b ... removes: 4 16 26 19 28 10 14 23 24 11 I(new) = [2,1;0,1] * x1 I(south) = [2,1;0,0] * x1 + [2,1;0,1] * x2 + [1,0;1,0] * x3 + [1,0;1,0] * x4 + [2;1] I(top) = [1,0;0,0] * x1 I(bot) = [0;0] I(west) = [2,0;1,0] * x1 + [2,1;0,0] * x2 + [2,0;1,1] * x3 + [1,0;1,1] * x4 + [1;0] I(north) = [1,0;0,0] * x1 + [2,1;0,0] * x2 + [1,0;1,0] * x3 + [1,1;0,0] * x4 + [2;1] I(east) = [2,1;1,0] * x1 + [2,1;1,1] * x2 + [1,0;0,0] * x3 + [1,0;0,0] * x4 + [2;1] I(old) = [1,1;0,0] * x1 + [2;1] Number of Rules: 8 Direct Mat2b ... removes: 8 21 17 22 7 20 6 2 I(new) = x1 I(south) = [1,1;1,0] * x1 + [2,1;0,0] * x2 + x3 + [1,0;0,0] * x4 + [1;1] I(top) = [1,0;1,1] * x1 I(bot) = [1;1] I(west) = [1,0;0,0] * x1 + [1,0;0,0] * x2 + [1,0;0,0] * x3 + [1,0;0,0] * x4 + [1;1] I(north) = [1,1;1,0] * x1 + [2,0;1,0] * x2 + [2,1;0,1] * x3 + [1,0;1,1] * x4 + [3;1] I(east) = [1,1;1,0] * x1 + [2,1;0,0] * x2 + x3 + [1,0;1,1] * x4 + [2;1] I(old) = [1,1;0,0] * x1 + [1;0] Number of Rules: 0