Platform claims not to support CPU time, falling back to wall time. Cannot find out cpu time on external processes, falling back to wall time! proof of /home/fs5/ayamada/tpdb/relative/Relative_05/rt3-1.trs # AProVE Commit ID: 2b684c7cda508b1711f707cb42f127e64fe1df88 ffrohn 20140415 dirty Termination of the given RelTRS could be proven: (0) RelTRS (1) RelTRSRRRProof [EQUIVALENT, 457 ms] (2) RelTRS (3) RelTRSRRRProof [EQUIVALENT, 195 ms] (4) RelTRS (5) RIsEmptyProof [EQUIVALENT, 27 ms] (6) YES ---------------------------------------- (0) Obligation: Relative term rewrite system: The relative TRS consists of the following R rules: f(g(x), y, z) -> f(x, y, g(z)) The relative TRS consists of the following S rules: f(x, y, g(z)) -> f(x, g(y), z) f(x, a, z) -> f(x, g(a), z) f(x, y, z) -> f(x, y, g(z)) ---------------------------------------- (1) RelTRSRRRProof (EQUIVALENT) We used the following monotonic ordering for rule removal: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(f(x_1, x_2, x_3)) = [[0], [0]] + [[1, 0], [1, 0]] * x_1 + [[1, 1], [0, 0]] * x_2 + [[1, 0], [1, 0]] * x_3 >>> <<< POL(g(x_1)) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< POL(a) = [[0], [1]] >>> With this ordering the following rules can be removed [MATRO] because they are oriented strictly: Rules from R: none Rules from S: f(x, a, z) -> f(x, g(a), z) ---------------------------------------- (2) Obligation: Relative term rewrite system: The relative TRS consists of the following R rules: f(g(x), y, z) -> f(x, y, g(z)) The relative TRS consists of the following S rules: f(x, y, g(z)) -> f(x, g(y), z) f(x, y, z) -> f(x, y, g(z)) ---------------------------------------- (3) RelTRSRRRProof (EQUIVALENT) We used the following monotonic ordering for rule removal: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(f(x_1, x_2, x_3)) = [[0], [0]] + [[1, 1], [1, 1]] * x_1 + [[1, 0], [1, 0]] * x_2 + [[1, 0], [1, 0]] * x_3 >>> <<< POL(g(x_1)) = [[0], [1]] + [[1, 0], [0, 1]] * x_1 >>> With this ordering the following rules can be removed [MATRO] because they are oriented strictly: Rules from R: f(g(x), y, z) -> f(x, y, g(z)) Rules from S: none ---------------------------------------- (4) Obligation: Relative term rewrite system: R is empty. The relative TRS consists of the following S rules: f(x, y, g(z)) -> f(x, g(y), z) f(x, y, z) -> f(x, y, g(z)) ---------------------------------------- (5) RIsEmptyProof (EQUIVALENT) The TRS R is empty. Hence, termination is trivially proven. ---------------------------------------- (6) YES