Platform claims not to support CPU time, falling back to wall time. Cannot find out cpu time on external processes, falling back to wall time! proof of /home/fs5/ayamada/tpdb/relative/Relative_05/rt2-5.trs # AProVE Commit ID: 2b684c7cda508b1711f707cb42f127e64fe1df88 ffrohn 20140415 dirty Termination of the given RelTRS could be proven: (0) RelTRS (1) FlatCCProof [EQUIVALENT, 0 ms] (2) RelTRS (3) RootLabelingProof [EQUIVALENT, 0 ms] (4) RelTRS (5) RelTRSRRRProof [EQUIVALENT, 74 ms] (6) RelTRS (7) RIsEmptyProof [EQUIVALENT, 118 ms] (8) YES ---------------------------------------- (0) Obligation: Relative term rewrite system: The relative TRS consists of the following R rules: f(f(x)) -> x The relative TRS consists of the following S rules: f(x) -> g(f(g(f(x)))) ---------------------------------------- (1) FlatCCProof (EQUIVALENT) We used flat context closure [ROOTLAB] ---------------------------------------- (2) Obligation: Relative term rewrite system: The relative TRS consists of the following R rules: f(f(f(x))) -> f(x) g(f(f(x))) -> g(x) The relative TRS consists of the following S rules: f(f(x)) -> f(g(f(g(f(x))))) g(f(x)) -> g(g(f(g(f(x))))) ---------------------------------------- (3) RootLabelingProof (EQUIVALENT) We used plain root labeling [ROOTLAB] with the following heuristic: LabelAll: All function symbols get labeled ---------------------------------------- (4) Obligation: Relative term rewrite system: The relative TRS consists of the following R rules: f_{f_1}(f_{f_1}(f_{f_1}(x))) -> f_{f_1}(x) f_{f_1}(f_{f_1}(f_{g_1}(x))) -> f_{g_1}(x) g_{f_1}(f_{f_1}(f_{f_1}(x))) -> g_{f_1}(x) g_{f_1}(f_{f_1}(f_{g_1}(x))) -> g_{g_1}(x) The relative TRS consists of the following S rules: f_{f_1}(f_{f_1}(x)) -> f_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{f_1}(x))))) f_{f_1}(f_{g_1}(x)) -> f_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{g_1}(x))))) g_{f_1}(f_{f_1}(x)) -> g_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{f_1}(x))))) g_{f_1}(f_{g_1}(x)) -> g_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{g_1}(x))))) ---------------------------------------- (5) RelTRSRRRProof (EQUIVALENT) We used the following monotonic ordering for rule removal: Polynomial interpretation [POLO]: POL(f_{f_1}(x_1)) = 1 + x_1 POL(f_{g_1}(x_1)) = x_1 POL(g_{f_1}(x_1)) = x_1 POL(g_{g_1}(x_1)) = x_1 With this ordering the following rules can be removed [MATRO] because they are oriented strictly: Rules from R: f_{f_1}(f_{f_1}(f_{f_1}(x))) -> f_{f_1}(x) f_{f_1}(f_{f_1}(f_{g_1}(x))) -> f_{g_1}(x) g_{f_1}(f_{f_1}(f_{f_1}(x))) -> g_{f_1}(x) g_{f_1}(f_{f_1}(f_{g_1}(x))) -> g_{g_1}(x) Rules from S: f_{f_1}(f_{f_1}(x)) -> f_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{f_1}(x))))) f_{f_1}(f_{g_1}(x)) -> f_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{g_1}(x))))) ---------------------------------------- (6) Obligation: Relative term rewrite system: R is empty. The relative TRS consists of the following S rules: g_{f_1}(f_{f_1}(x)) -> g_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{f_1}(x))))) g_{f_1}(f_{g_1}(x)) -> g_{g_1}(g_{f_1}(f_{g_1}(g_{f_1}(f_{g_1}(x))))) ---------------------------------------- (7) RIsEmptyProof (EQUIVALENT) The TRS R is empty. Hence, termination is trivially proven. ---------------------------------------- (8) YES