AWCBB

- AWCBB (Automata with constraints Between Brothers):
 - AWE DC in which constraints are restricted to \(i = j, i \neq j \) (\(i, j \in N \))

- Ex.: \(A = ((q, F, \{q\}, \Delta) \)
 - \(F = \{f(., .)\} \)
 - \(\Delta = \{a \rightarrow q, f(q, q) \mapsto q\} \)
 - \(L(A) \) is the set of complete binary trees

- AWCBB is closed by union, intersection, and complement

- Emptiness problem for AWCBB is decidable

- Key of the proof:
 - Consider a deterministic AWCBB. Then if \(q_1 \neq q_2 \) the following rule never be used
 \[f(q_1, q_2) \mapsto q \]
 - For the following rule, we must know whether more than one trees are reachable to the given state
 \[a \rightarrow q, b \rightarrow q, f(q, q) \mapsto q' \]

- \(M_F \): maximum number of arguments of symbols in \(F \)
- \(L(q) \) \(\overset{\text{def}}{=} \{ t \mid t \rightarrow_A q \} \)

- Th.: Emptiness for an AWCBB is decidable

- Proof sketch: Assume deterministic AWCBB with rule set \(\Delta \)
 - Initialize \(L_0 := \emptyset \), and repeat the following step for each state \(p \) until \(L_p \)'s saturate
 - \(L_q := L_q \cup \{ t \} \) for \(t \) such that \(t \notin L_q \), \(|L_q| \leq M_F \) and the following holds:
 \[f(q_1, \ldots, q_n) \mapsto q \in \Delta, \quad t_1 \in L_{q_1}, \ldots, t_n \in L_{q_n}, \quad \text{and} \]
 \[t = f(t_1, \ldots, t_n), \quad t \models c \]
 - It is empty if \(L_q = \emptyset \) for all accepting states \(q \)

Reduction automata

- AWEDC that satisfies the conditions
 - States are ordered <, and
 - For any \(f(q_1, \ldots, q_n) \mapsto q \)
 \[\forall i. q_i > q \text{ if } c \text{ contains equality} \]
 \[\forall i. q_i \geq q \text{ otherwise} \]

- Ex.: Reduction automaton accepting \(g(g(t, s), t) \) for any \(t, s \)
 - \(a \rightarrow q_t, g(q_t, q_t) \mapsto qy_0, g(q_t, q_t) \mapsto qy_0 \)
 - \(g(qy_0, qy_0) \mapsto qf, g(qy_0, qy_0) \mapsto qy_0 \)
 - \(g(qy_0) \mapsto qf, g(qy_0, qy_0) \mapsto qy_0 \)
 - \(g(qy_0) \mapsto qf, g(qy_0, qy_0) \mapsto qf \) where \(q \in \{ q_t, q_y, q_f \} \)

Property of reduction automata

- Closed under union and intersection
 - Open for complement

- Emptiness problem
 - Decidable if complete and deterministic
 - Undecidable if non-deterministic

- Finiteness problem (finiteness of \(L(A) \)) is decidable